Building science

Building science is the collection of scientific knowledge that focuses on the analysis of the physical phenomena affecting buildings. Building physics, architectural science and applied physics are terms used for the knowledge domain that overlaps with building science.

During the architectural design process, building science knowledge is used to inform design decisions to optimize building performance. Design decisions can be made based on knowledge of building science principles and established guidelines, such as the NIBS Whole Building Design Guide (WBDG) and the collection of ASHRAE Standards related to building science.

When existing buildings are being evaluated, measurements and computational tools can be used to evaluate performance based on measured existing conditions. An array of in-field testing equipment can be used to measure temperature, moisture, sound levels, air pollutants, or other criteria. Standardized procedures for taking these measurements are provided in the Performance Measurement Protocols for Commercial Buildings. For example, thermal infrared (IR) imaging devices can be used to measure temperatures of building components while the building is in use. These measurements can be used to evaluate how the mechanical system is operating and if there are areas of anomalous heat gain or heat loss through the building envelope.

Many aspects of building science are the responsibility of the architect (in Canada, many architectural firms employ an architectural technologist for this purpose), often in collaboration with the engineering disciplines that have evolved to handle 'non-building envelope' building science concerns: Civil engineering, Structural engineering, Earthquake engineering, Geotechnical engineering, Mechanical engineering, Electrical engineering, Acoustic engineering, & fire code engineering. Even the interior designer will inevitably generate a few building science issues.

The mechanical systems, usually a sub-set of the broader Building Services, used to control the temperature, humidity, pressure and other select aspects of the indoor environment are often described as the Heating, Ventilating, and Air-Conditioning (HVAC) systems. These systems have grown in complexity and importance (often consuming around 20% of the total budget in commercial buildings) as occupants demand tighter control of conditions, buildings become larger, and enclosures and passive measures became less important as a means of providing comfort.

The building enclosure is the part of the building that separates the indoors from the outdoors. This includes the wall, roof, windows, slabs on grade, and joints between all of these. The comfort, productivity, and even health of building occupants in areas near the building enclosure (i.e., perimeter zones) are affected by outdoor influences such as noise, temperature, and solar radiation, and by their ability to control these influences. As part of its function, the enclosure must control (not necessarily block or stop) the flow of heat, air, vapor, solar radiation, insects, noise, etc. Daylight transmittance through glazed components of the facade can be analyzed to evaluate the reduced need for electric lighting.

Although there are no direct or integrated professional architecture or engineering certifications for building science, there are independent professional credentials associated with the disciplines. Building science is typically a specialization within the broad areas of architecture or engineering practice. However, there are professional organizations offering individual professional credentials in specialized areas such as Leadership in Energy and Environmental Design, which is called LEED; or WELL, another credential maintained by the U.S. Green Building Council and the Green Business Certification Inc. respectively. There are other building sustainability accreditation and certification institutions as well. Also in the US, contractors certified by the Building Performance Institute, an independent organization, advertise that they operate businesses as Building Scientists. This is questionable due to their lack of scientific background and credentials. On the other hand, more formal building science experience is true in Canada for most of the Certified Energy Advisors. Many of these trades and technologists require and receive some training in very specific areas of building science (e.g., air tightness, or thermal insulation).



Home | Etymology of house | Elements of house | History of house | Middle Ages  | Industrial Revolution | 19th and 20th centuries |

| Construction | Identification and symbolism | Home construction | Building science | Mixed-use developmentAffordable housing | Real estate bubble |