Survey methodology

A field of applied statistics of human research surveys, survey methodology studies the sampling of individual units from a population and associated techniques of survey data collection, such as questionnaire construction and methods for improving the number and accuracy of responses to surveys. Survey methodology includes instruments or procedures that ask one or more questions that may or may not be answered.

Survey methodology as a scientific field seeks to identify principles about the sample design, data collection instruments, statistical adjustment of data, and data processing, and final data analysis that can create systematic and random survey errors. Survey errors are sometimes analyzed in connection with survey cost. Cost constraints are sometimes framed as improving quality within cost constraints, or alternatively, reducing costs for a fixed level of quality. Survey methodology is both a scientific field and a profession, meaning that some professionals in the field focus on survey errors empirically and others design surveys to reduce them. For survey designers, the task involves making a large set of decisions about thousands of individual features of a survey in order to improve it.

The sample is chosen from the sampling frame, which consists of a list of all members of the population of interest. The goal of a survey is not to describe the sample, but the larger population. This generalizing ability is dependent on the representativeness of the sample, as stated above. Each member of the population is termed an element. There are frequent difficulties one encounters while choosing a representative sample. One common error that results is selection bias. Selection bias results when the procedures used to select a sample result in over representation or under representation of some significant aspect of the population. For instance, if the population of interest consists of 75% females, and 25% males, and the sample consists of 40% females and 60% males, females are under represented while males are overrepresented. In order to minimize selection biases, stratified random sampling is often used. This is when the population is divided into sub-populations called strata, and random samples are drawn from each of the strata, or elements are drawn for the sample on a proportional basis.

In cross-sectional studies, a sample (or samples) is drawn from the relevant population and studied once. A cross-sectional study describes characteristics of that population at one time, but cannot give any insight as to the causes of population characteristics because it is a predictive, correlational design.

A successive independent samples design draws multiple random samples from a population at one or more times. This design can study changes within a population, but not changes within individuals because the same individuals are not surveyed more than once. Such studies cannot, therefore, identify the causes of change over time necessarily. For successive independent samples designs to be effective, the samples must be drawn from the same population, and must be equally representative of it. If the samples are not comparable, the changes between samples may be due to demographic characteristics rather than time. In addition, the questions must be asked in the same way so that responses can be compared directly.

Questionnaires are the most commonly used tool in survey research. However, the results of a particular survey are worthless if the questionnaire is written inadequately. Questionnaires should produce valid and reliable demographic variable measures and should yield valid and reliable individual disparities that self-report scales generate.

Six steps can be employed to construct a questionnaire that will produce reliable and valid results. First, one must decide what kind of information should be collected. Second, one must decide how to conduct the questionnaire. Thirdly, one must construct a first draft of the questionnaire. Fourth, the questionnaire should be revised. Next, the questionnaire should be pretested. Finally, the questionnaire should be edited and the procedures for its use should be specified.

Survey researchers should carefully construct the order of questions in a questionnaire. For questionnaires that are self-administered, the most interesting questions should be at the beginning of the questionnaire to catch the respondent's attention, while demographic questions should be near the end. Contrastingly, if a survey is being administered over the telephone or in person, demographic questions should be administered at the beginning of the interview to boost the respondent's confidence. Another reason to be mindful of question order may cause a survey response effect in which one question may affect how people respond to subsequent questions as a result of priming.



Home | Etymology of house | Elements of house | History of house | Middle Ages  | Industrial Revolution | 19th and 20th centuries |

| Construction | Identification and symbolism | Home construction | Building science | Mixed-use developmentAffordable housing | Real estate bubble |